
Fun with Praat

Will Styler - LSA Institute 2011

Some introductory acoustics and digital audio
information

What is sound?

Digitization of Sound

Computers don’t understand waves, just 0 and 1

Sampling rate

From: http://help.adobe.com/en_US/Soundbooth/2.0/WS41FBD92E-39EA-4eda-B490-EDE8EA1175C8a.html

The Nyquist Frequency: The highest frequency
that a given sampling rate can resolve

Praat’s default setting (44,100) is just fine.

File Types and Compression in Digital Audio

Lossless
(TIFF)

GIF 256

GIF 64

GIF 10

GIF 4

GIF 2

GIF 2 image
converted back to

Lossless

Once you compress sound, you will never get
detail back.

Lossless File Types:
.wav - “waveform audio file format”
.aiff - “audio interchange file format”
.flac - “free lossless audio codec”
Apple Lossless (.m4a)
.shn - “Shorten”. You’ll never see this.

Compressed File Types:
.mp3 - “mpeg-3 audio”
.m4a - “AAC (Advanced Audio Codec”
.wma - “Windows Media Audio”

Repeat after me:

Lossless good. Compressed bad.

Use .wav or .aiff

Clipping

Clipping is not a good thing.

(but Praat will warn you)

Now, it’s Praat time!

So, what parts of Praat do we need to worry
about?

The “Objects” window

The “Editor” window

The “Picture” window

The “Info” window

The “Help” window

Praat Scripting for fun and (minimal) profit

The Script Editor Window

Why script in Praat?

• Let the computer do the boring parts of your measurements

• Be more consistent with your measurements over large amounts of data

• Get your work done faster with a computer co-pilot

• Doing the same thing more than a few times is silly

• You can do anything that you can do through menus in Praat

• You are the bottleneck in your data measurement speed

What can’t you do with Praat scripting

• Label your data/speech recognition

• Work with programs that aren’t Praat

• Generate measurements as consistent as hand measurements

• Sanity-check your data and measurements

• Run statistics on your data

• Anything that you can’t, eventually, do through the Praat UI

• But you can definitely do some things more easily!

What’s the catch?

• Humans make sane measurements, computers don’t

• You know that his F0 is not 3000 Hz. Praat doesn’t.

• You can find H1 and H2 easily. It can’t

• You can figure out easily if the formant track is right. It definitely can’t.

• Praat is a black box sometimes

• A single indent can be your worst enemy

• You need to double-check everything, or your data could be subtly wrong

What is a Praat script?

A file with a series of commands for Praat and
comments for humans

This is a comment, Praat ignores lines that start with

select Sound untitled
Plays the sound
Play
Gets the duration
Get total duration
Gets the amplitude
Get intensity (dB)
Renames it
Rename... My_awesome_sound
Prints the message into the Praat information window
print “Script Finished”

You can just save that to a file, then run it later

Your very first script

• Do something that you do all the time, in the exact same way...

• Like making a broadband vs. narrowband spectrogram

• Open Praat, go to “New Praat Script”

• Now, open a sound, and narrow the spectrogram

• Then, go to the script window and “Paste History”

• History saves everything you do in Praat

Almost done...

• You now have a few lines, one of which looks like ...

• Spectrogram settings... 0 5000 0.05 50

• That’s your first script. Make that line the only thing in the script window

• Now save the script someplace handy, narrowband.praat

• Now, you can add it to any menu as described in Rebecca’s handout (Section
3)

• There you go. You just Praat scripted. That was easy, no?

Praat scripting commands are similar to the
commands in the UI

Scripting Command to change these settings:
Spectrogram settings... 0 5000 0.005 50

Script to make the spectrogram broad again

Spectrogram settings... 0 5000 0.025 50

Getting a bit fancier

• Sometimes, you want to automate more than one command

• You can put things in a sequence:

• Then you just put those lines into a file, and Praat runs through them

• That entire operation (resampling and renaming a sound) can be done with a
single command

• But you can get fancier still...

soundname$ = selected$ ("Sound")
select Sound 'soundname$'
Rename... 'soundname$'_resampled
Resample... 10000 50
Write to WAV file... ‘soundname$‘_10000.wav

Variables

• Assigning variables (variable = [whatever you want it to be])

• Always start with lowercase letter, strings end with $

• variable = 1000

• variable = Get number of intervals... '1'

• start = Get starting point... 1 2

• end = Get end point... 1 2

• midpoint = start + ((end - start) / 2)

f3h = Get third formant
length = (1715/(4 * f3h))

lcm = length * 100
print Your vocal tract length is 'lcm:1' cm

Get vocal tract length from F3 at cursor

Running your scripts

• Two options:

• Add it to a menu and use it like another menu option/command as
described on the handout in your folders

• Best for quick scripts you use often

• Beware, scripts which work in the editor window need to be added to
the editor menus

• Just open the script in Praat and click “Run” in the Script editor window

The Button/Skynet continuum

• You can write scripts of various degrees of complexity

• Some scripts run a single command quickly, and act as a new button

• Here, the user is completely in control, but it’s relatively slow

• Some scripts run a large process, but keep the user involved

• Here, the user yields some control to gain speed

• Some scripts go through a large process on their own, without your help

• Fastest, but you don’t control any of the process while it’s running

... but sometimes, you need more than just the file(s)
you have open

Giving Praat files and information

• So, Praat doesn’t know what a vowel is, and can’t find them natively

• Sound files are annotated for Praat by making “TextGrids”. These are
companion files that list segments or points, along with their labels

• Textgrids are saved as different files

• Textgrids have “Tiers”, as many as you want, which can be used to annotate
different levels of detail

• You might have a “Word” tier and a “Vowel” tier.

• Interval tiers mark spans (like vowels), point tiers mark moments (like
releases)

Creating a TextGrid

• Open or Record a Sound

• Select the sound in the Objects window

• Annotate -> “To TextGrid...”

• Give names to all tiers you want

• Specify which, if any, are point tiers

• Tiers will be ordered in the order named

Textgridding, continued

• Select both Sound whatever and TextGrid whatever in the Objects window,
and click “View and Edit”

Textgridding, continued

• Now, click on the tier you’d like to make an interval on

• Select the part of the word you’d like the interval to contain

• Hit “Return”

• Now click your interval and name it

• You can use IPA here, but you probably shouldn’t...

• Repeat for all your tiers and all your words

• Then, if you’d like, you can split your textgrids/sounds into words later

• Use file_segmenter.praat

There are scripts and ways to make this easier/faster.
Talk to me.

Once you’ve got files and textgrids, you can then pull in
a batch of files and have Praat do something to every

one of those files.

Praat Programming Basics

Praat’s Scripting Help

• It’s actually really, really good

• ... and all of the following is covered there, more thoroughly

For loops

• For loops iterate through large amounts of data, doing the same thing many
times over and over again.

• They always have the format for [var] from 1 to [other var],
followed by an indented block, ended with an endfor

select TextGrid 'sn$'
number_intervals = Get number of intervals... 2
for k from 1 to number_intervals
Set interval text... 2 k Vowel

endfor

(This chunk of code changes the text for each interval in tier two of a textgrid to “Vowel”)

if statements

• Sometimes, you want to make sure a given action happens only sometimes

• if statements let you say “Do this only if X”

• Usually take the form if [var] = [value], indented block, endif

vowel_label$ = Get label of interval... 1 2
if vowel_label = “i”
Set interval text... 2 2 HighFrontVowel

endif

vowel_label$ = Get label of interval... 1 2
if vowel_label <> “i”
Set interval text... 2 2 AnotherVowel

endif
(If the vowel’s label is “i”, set the interval text to “HighFrontVowel”, but if not, set it to “Another

vowel”)

Other Residents of Script-land

• # at the start of the line indicates a comment, nothing on this line affects how
the script runs

• Adding a colon followed by a number to a variable name (variable:2) will
round the number to that number of decimal places

• The print command will print whatever follows it into the info window

• print duration will print the contents of the variable duration

• print “duration” will print the word “duration”

• Making Praat print variables can sometimes help you find where a script is
crashing in a horrible mess of code and failure

Cannibalism isn’t so bad

• If you find a script that does 90% of what
you want, add the 10% yourself

• Make sure the script does what it says it
does, well

• Don’t trust anybody else’s math

• Especially not mine

• Give them credit with a comment

Praat is odd...

• Avoid long (~20 character) filenames

• Don’t have decimals in filenames

• The symbol for “not equal to” is <> in Praat, rather than != or something sane

• You’ll have to describe folder/file locations differently on a Mac vs. Windows

• directory$ = "c:\Documents\test data\" (Windows)

• directory$ = "/Users/will/Documents/test data/" (Mac)

• Praat won’t always agree with itself from window to window

Getting really fancy...

(It really does get easier the more you do this... trust me)

Forms

• Forms show up at the very start of your
script

• They allow you to enter information at the
start of every script run

• They allow your user not to need to enter
paths and variable changes into the script
per-se

• They let you make decisions about how
the script is run

• More info in the tutorial

Procedures

• If you’re doing the same thing over and over in a script, make a procedure of
it, and just call that procedure

• You can define the procedure anywhere...

• Then just use it later in the script, even in other procedures

procedure f0check
! if h1 < 90
! ! error = 1
! endif
endproc

h1 = [some variable]
call f0check
if error = 1
pause

endif

Pause forms

• These allow the script to pause so the
user can fill in or confirm data

• This also gives the user a chance to
change the course of the script while it’s
already running

• The script will stop until the user restarts
it

• Also listed in the tutorial (“Controlling the
User”)

Editor Scripting

• If you need access to things done in the editor window, you’ll need to do
editor scripting

• This allows you to do things like cutting and pasting chunks of sound, and
using the Formant and Pitch trackers within the editor window

! select Sound 'soundname$'
! ! ! ! ! Edit
! ! ! ! ! editor Sound 'soundname$'
! ! ! ! ! Select... startvowel endvowel
! ! ! ! ! Cut
! ! ! ! ! endeditor

Cleanup

• If you run a large for loop, you can end up with thousands of objects in your
Praat window if you don’t clean up between words

• Throw something like the following in at the end of each file’s for loop

 select all
 minus Strings list
 Remove

Data checks

• Praat doesn’t know what sane measurements are

• Take the data more times than you need, and only save data that matches

• Ask it to present you with the data to hand confirm

• Figure out how Praat fails, and have it detect the failure mode, try again

• Sometimes, you just need to back up 10 ms or something

• If you’re feeling dirty, use averaging

• Post-Hoc checking. Lots of it. Over, and over, and over.

Enjoy a demo, then go forth and script joyously!

... and please feel free to email me when you’re having
trouble!

